## Rearranging Factorising

## Did you know?

- Being able to express equations in different forms gives us different information
- Later we'll be looking at information needed to sketch graphs
- If you continue your maths studies to A Level Further Maths, you will draw graphs such as these



$$
\left(x^{2}+y^{2}-1\right)^{3}-x^{2} y^{3}=0
$$



1. The equation of a line is given as

$$
\text { i. } 3 y+4 x-2=0
$$

b. What is the gradient of the line?
2. A rectangle has area $A$, length $y$ and width $x-2$. Write an expression for the length of the rectangle, $y$, in terms of $A$ and $x$
3. Make $x$ the subject of:
a. $a x-y=z+b x$
4. The equation of a line is given as

$$
\text { i. } 5(b-p)=2(b+3)
$$

5. John says the first step to rearranging
a. $\frac{x-a}{f}=3 g$ is to add $a$ to $3 g$. Is he right? Explain your answer.
6. Make $a$ the subject of
a. $5(a-t)=3(a+x)$
7. Make $x$ the subject of
a. $a y+x=4 x+x b$
8. Make $x$ the subject of
a. $2 \pi \sqrt{x+t}=4$

## Further Factorising 2

1. Make $y$ the subject of
$x y+6=7-k y$
2. Find an expression for the area of a rectangle with length, $(y-x)$ and width, ( $x-2$ )
3. Rewrite your expression in Q2 to have $y$ expressed in terms of $A$ and $x$
4. Make $y$ the subject of
$\frac{4}{y}+1=2 x$
5. Displacement can be expressed as
i. $s=u t+\frac{1}{2} a t^{2}$

Express $a$ in terms of $s, u$ and $t$
6. Make $y$ the subject of $\sqrt{b y^{2}-x}=D$
7. The area of a trapezium has formula

$$
\text { i. } A=\frac{1}{2}\left(\frac{a+b}{h}\right)
$$

Express $h$ in terms of $A, a$ and $b$
8. Make $t$ the subject $b(t+a)=x(t+b)$

## Equivalent quadratics

Sort the expressions below in to 4 sets of 4 equivalent expressions

| $x^{2}-25$ | $2 x^{2}-2$ |
| :---: | :---: |
| $(x+5)(x+6)-x-55$ | $(x+5)(x-5)$ |
| $2\left(x^{2}-1\right)$ | $(x+5)^{2}-10 x-50$ |
| $2(x+3)(x-1)$ | $2(x+1)(x-1)$ |
| $(x+5)^{2}-50$ | $2(x+2)^{2}-4 x-14$ |
| $2 x^{2}+4 x-6$ | $(x+5)(x-5)+10 x$ |
| $2(x+1)^{2}-8$ | $(x-5)(x+6)-x+5$ |
| $x^{2}+10 x-25$ | $2(x+1)^{2}-4(x+1)$ |
| 2 |  |

- Take two positive values greater than 1
- Take the same two values
- Find the mean of the two values


## THEN

- Square it

|  |  |
| :--- | :--- |
|  | $\square$ Take the same two values |
| THEN | $\square$ Square them |
|  | $\square$ |
|  | Find the mean of the squares |

## Which value is greater?

Is this always true?

## Can you prove it?

Hint

- Try out several examples
- Is one expression always bigger than the other?
- Next try using $x$ and $y$ instead.
- If you subtract one expression from the other, can you work out if it's positive or negative?


## Difference of numeric squares

## Problem 1

Mrs Gryce was asked to calculate $18 \times 12$ by Mr Lo who had forgotten his calculator and was doing some marking.

Mrs Gryce quickly responded
"Well, that's just $15^{2}-9$ which is 216 "
Mr Lo was amazed.

- How did she know so quickly what the answer was?


## Problem 2

Use the fact that $3 \times 4=12$
Can you quickly work out a value for $(3.5)^{2}$ ?

[^0]
## The Quadratic Formula

## We've all used the Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- But where does it come from?
- Can you prove why the quadratic formula works?

Rearrange these steps in order to prove the quadratic formula

$$
a x^{2}+b x+c=0 \longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$



$$
\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}=-\frac{c}{a}
$$

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

$$
a x^{2}+b x=-c
$$

$$
x^{2}+\frac{b}{a} x=-\frac{c}{a}
$$

$$
\left(x+\frac{b}{2 a}\right)= \pm \sqrt{ }\left(\frac{b^{2}-4 a c}{4 a^{2}}\right)
$$

$$
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

Match the steps below with the algebra above for a slightly easier version

Step 1: Subtract $c$ from both sides
Step 3: Complete the square on the left hand side
Step 5: Make the right hand side into a single expression
Step 7: Simplify the denominator on the right hand side

Step 2: Divide both sides by a
Step 4: Add $\frac{b^{2}}{4 a^{2}}$ to both sides
Step 6: Take the square root of both sides
Step 8: Subtract $\frac{b}{2 a}$ from both sides

Step 9: You now have the quadratic formula!

## Equations of Circles

$$
x^{2}+y^{2}=25
$$

Represents a circle with centre $(0,0)$ and radius 5


Generally, the equation of a circle with centre $(0,0)$ and radius $r$ can be written as

$$
x^{2}+y^{2}=r^{2}
$$

## What happens if the centre is not $(0,0)$ ?

Let's have a look at this equation: $\quad x^{2}+4 x+y^{2}-6 y=12$
We can rearrange this by completing the square separately for the $x$ terms and $y$ terms

$$
x^{2}+4 x=(x+2)^{2}-4 \text { and } y^{2}-6 y=(y-3)^{2}-9
$$

So

$$
x^{2}+4 x+y^{2}-6 y=12
$$

Can be written as

$$
\begin{gathered}
(x+2)^{2}-4+(y-3)^{2}-9=12 \\
(x+2)^{2}+(y-3)^{2}-13=12 \\
(x+2)^{2}+(y-3)^{2}=25
\end{gathered}
$$



$$
(x+2)^{2}+(y-3)^{2}=25
$$

Represents a circle with Centre ( $-2,3$ ) and radius 5

- Can you find the centre and radii of these circles by rearranging into the form

$$
(x+a)^{2}+(y-b)^{2}=r^{2}
$$

$$
x^{2}-8 x+y^{2}-2 y=19
$$

$$
x^{2}+6 x+y^{2}-10 y=15
$$


[^0]:    - Can you see a connection between the previous question and this one?

