

Rearranging Factorising

?

Did you know?

- Being able to express equations in different forms gives us different information
- Later we'll be looking at information needed to sketch graphs
- If you continue your maths studies to A Level Further Maths, you will draw graphs such as these

Futher Factorising 1

- 1. The equation of a line is given as i. 3y + 4x - 2 = 0. b. What is the gradient of the line?
- 2. A rectangle has area A, length y and width x - 2. Write an expression for the length of the rectangle, y, in terms of A and x
- 3. Make x the subject of: a. ax - y = z + bx
- 4. The equation of a line is given as i. 5(b-p) = 2(b+3)

- 5. John says the first step to rearranging a. $\frac{\dot{x}-a}{f} = 3g$ is to add *a* to 3g. Is he right? Explain your answer.
- 6. Make *a* the subject of a. 5(a - t) = 3(a + x)
- 7. Make x the subject of a. ay + x = 4x + xb
- 8. Make x the subject of a. $2\pi\sqrt{x+t} = 4$

Further Factorising 2

- 1. Make y the subject of xy + 6 = 7 - ky
- 2. Find an expression for the area of a rectangle with length, (y - x) and width, (x - 2)
- 3. Rewrite your expression in Q2 to have y expressed in terms of A and x
- 4. Make y the subject of $\frac{4}{y} + 1 = 2x$

- Displacement can be expressed as i. $s = ut + \frac{1}{2}at^2$ Express a in terms of s, u and t
- 6. Make y the subject of $\sqrt{by^2 x} = D$
- 7. The area of a trapezium has formula i. $A = \frac{1}{2} \left(\frac{a+b}{h} \right)$ Express h in terms of A, a and b
- 8. Make t the subject b(t + a) = x(t + b)

Equivalent quadratics

Sort the expressions below in to 4 sets of 4 equivalent expressions

$x^2 - 25$	$2x^2 - 2$
(x+5)(x+6) - x - 55	(x+5)(x-5)
$2(x^2-1)$	$(x+5)^2 - 10x - 50$
2(x+3)(x-1)	2(x+1)(x-1)
$(x+5)^2 - 50$	$2(x+2)^2 - 4x - 14$
$2x^2 + 4x - 6$	(x+5)(x-5)+10x
$2(x+1)^2 - 8$	(x-5)(x+6) - x + 5
$x^2 + 10x - 25$	$2(x+1)^2 - 4(x+1)$

Which value is greater? Is this always true? Can you prove it?

Hint

- Try out several examples
- Is one expression always bigger than the other?
- Next try using x and y instead.
- If you subtract one expression from the other, can you work out if it's positive or negative?

Difference of numeric squares

Problem 1

Mrs Gryce was asked to calculate 18×12 by Mr Lo who had forgotten his calculator and was doing some marking.

Mrs Gryce quickly responded

"Well, that's just $15^2 - 9$ which is 216"

Mr Lo was amazed.

How did she know so quickly what the answer was?

Problem 2

Use the fact that $3 \times 4 = 12$

Can you quickly work out a value for $(3.5)^2$?

Can you see a connection between the previous question and this one?

The Quadratic Formula

We've all used the Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- But where does it come from?
- Can you prove why the quadratic formula works?

Rearrange these steps in order to prove the quadratic formula

Match the steps below with the algebra above for a slightly easier version

Step 1: Subtract *c* from both sides
Step 3: Complete the square on the left hand side
Step 5: Make the right hand side into a single expression
Step 7: Simplify the denominator on the right hand side
Step 9: You now have the quadratic formula!

Step 2: Divide both sides by *a* Step 4: Add $\frac{b^2}{4a^2}$ to both sides Step 6: Take the square root of both sides Step 8: Subtract $\frac{b}{2a}$ from both sides

Equations of Circles

$$x^2 + y^2 = 25$$

Represents a circle with centre (0,0) and radius 5

Generally, the equation of a circle with centre (0,0) and radius r can be written as

$$x^2 + y^2 = r^2$$

What happens if the centre is not (0,0)?

Let's have a look at this equation: $x^2 + 4x + y^2 - 6y = 12$

We can rearrange this by completing the square separately for the *x* terms and *y* terms

So

Can be written as

 $x^{2} + 4x + y^{2} - 6y = 12$ $(x + 2)^{2} - 4 + (y - 3)^{2} - 9 = 12$ $(x + 2)^{2} + (y - 3)^{2} - 13 = 12$ $(x + 2)^{2} + (y - 3)^{2} = 25$

 $x^{2} + 4x = (x + 2)^{2} - 4$ and $y^{2} - 6y = (y - 3)^{2} - 9$

 $(x+2)^2 + (y-3)^2 = 25$

Represents a circle with Centre (-2,3) and radius 5

Can you find the centre and radii of these circles by rearranging into the form

$$(x+a)^2 + (y-b)^2 = r^2$$

$$x^2 - 8x + y^2 - 2y = 19$$

$$x^2 + 6x + y^2 - 10y = 15$$

