Advanced Mathematics

Rearranging

$?$

Did you know?

This is a well-known formula that you might recognise.

$$
F=\frac{9}{5} C+32
$$

It is used to change temperatures in degrees
Celsius ${ }^{\circ} \mathrm{C}$ to degrees Fahrenheit ${ }^{\circ} \mathrm{F}$

For example: If it is $20^{\circ} \mathrm{C}$ to find the temperature in ${ }^{\circ} \mathrm{F}$ you simply substitute $\mathrm{C}=20$ into the formula above:

What would I need to do if I wanted to convert from Fahrenheit to Celsius??

$$
{ }^{\circ} \mathrm{C}
$$

1. Solve $3 x+25=60$
2. Rearrange $z=w+3$ to make w the subject
3. Rearrange $5 x-4=2 y$ to make x the subject
4. Rearrange $y=\frac{t}{6}$ to make t the subject
5. $y=6 p^{2}+2$ rearrange to make p the subject
6. The area of a circle is found using $\mathrm{A}=\pi r^{2}$ Write the equation you would use to find the radius.
7. In a right angled triangle $\sin x=\frac{O p p}{H y p}$ write down the equation for finding the opposite side.
8. To change temperatures in Celsius to Fahrenheit this formula is used.

$$
F=\frac{9}{5} C+32
$$

Rearrange to give the formula for converting Celsius to Fahrenheit

1. Make x the subject of $x-f=y+b$
2. Make y the subject $t y-x^{2}=b$
3. Make c the subject $a c+d=m^{2}$
4. Make a the subject $x(a-e)=d$
5. Make y the subject $b(y-b)=b^{2}$
6. To find velocity, v, we use the formula

$$
v^{2}=u^{2}-2 a s
$$

Rearrange to find s
7. The area of a sector of a circle is given by

$$
A=\frac{\theta \pi r^{2}}{360}
$$

Express θ in terms of A, π and r
8. Make x the subject $m(y-x)=t$

Line them up 1

Which is which?

- $y=2 x+5$
- $2 y+x+5=0$
- $y+2 x=1$

Line them up 2

- $y=4-3 x$
- $y+3 x+4=0$
- $y+3 x=0$
- $y=3 x$
- $y=3 x+4$
- $y-3 x+4=0$

Pairing up

Can you sort the cards into pairs under the following headings:

1. These lines are perpendicular
2. These lines have the same x intercept
3. These lines have the same y intercept
$3 y=2 x-8$

$$
y=6 x-4
$$

$$
y+x+8=0
$$

$$
4 y=x+3
$$

$$
2 y+8=3 x
$$

$$
y+6 x=11
$$

18

$$
2 y+x=4
$$

$$
y=8 x-3
$$

$$
y+4 x+6=0
$$

Pipe Problem

Can you find the radius of the pipe shown if the only measurement you can take is the one marked h ?

Rearranging and Functions

A function relates an input to an output

Here is an example of a function machine

Complete the following table for the function machine shown

Input	Output
5	
-4	
x	
	x

What do you notice?

Rearranging and Functions Solutions

Let's introduce function notation that you will use in A level maths:
If $f(x)=3 x+2$ then to find the inverse function we do the reverse so we subtract 2 then divide by 3

This gives us the inverse function which we call $f^{-1}(x)$

$$
\text { In this case } f^{-1}(x)=\frac{x-2}{3}
$$

Important! The inverse should give us back the original value

 Let's check: $f(5)=17$ and $f^{-1}(17)=5$
Rearranging and Functions

Original function
$f(x)=3 x+2$

$$
\begin{aligned}
& \text { Inverse function } \\
& f^{-1}(x)=\frac{x-2}{3}
\end{aligned}
$$

Find the inverse of each of these functions.
1.

$$
f(x)=3 x-5
$$

5. $\quad f(x)=\frac{2}{3} x+3$
6.

$$
f(x)=4 x+7
$$

6. $\quad f(x)=3-2 x$
7.

$$
f(x)=\frac{x}{2}+1
$$

4.

$$
f(x)=\frac{x+2}{3}
$$

Instead of reversing a function machine - try re-arranging the original function to make x the subject

