Chemistry B (Salters)

Y12 Open-Book Assessment AS Chemistry

OCR Oxford Cambridge and RSA

Duration: 2 hours

Christopher Shortman

Please note that you may see slight differences between this paper and the original.

Candidates answer on the Question paper.

OCR supplied materials:

Additional resources may be supplied with this paper.

Other materials required:

- Pencil
- Ruler (cm/mm)

INSTRUCTIONS TO CANDIDATES

- · Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions, unless your teacher tells you otherwise.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Where space is provided below the question, please write your answer there.
- You may use additional paper, or a specific Answer sheet if one is provided, but you must clearly show your candidate number, centre number and question number(s).

INFORMATION FOR CANDIDATES

- The quality of written communication is assessed in questions marked with either a pencil or an asterisk. In History and Geography a *Quality of extended response* question is marked with an asterisk, while a pencil is used for questions in which *Spelling, punctuation and grammar and the use of specialist terminology* is assessed.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 100.
- The total number of marks may take into account some 'either/or' question choices.

1.	How many protons are in a hydroxide ion, OH ⁻ ?	
	A. 1 B. 8 C. 9 D. 10	
	Your answer	[1]
2.	Which of the following is the correct electronic configuration for a potassium ion, K+?	
	A. 1s ² 2s ² 2p ⁶ 3s ¹ B. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ C. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ D. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²	
	Your answer	[1]
3.	Which pair would give a bright yellow precipitate when mixed?	
	 A. hydrochloric acid and copper(II) sulfate solution B. sodium hydroxide solution and iron(III) sulfate solution C. sodium iodide solution and lead(II) nitrate solution D. sodium sulfate solution and barium nitrate solution 	
	Your answer	[1]

4. Ammonia is made by the reaction shown below.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3 \Delta H = -92 \text{ kJ mol}^{-1}$$

Which conditions will result in the greatest equilibrium yield of ammonia?

	Temperature	Pressure
Α	high	high
В	low	high
С	high	low
D	low	low

Value analyon	
Your answer	

[1]

- 5. Why do the boiling points of the halogens increase down the group?
 - A. There is an increase in bond enthalpy.
 - B. There is an increase in bond polarity.
 - C. There is an increase in the strength of instantaneous dipoles.
 - D. There is a decrease in electronegativity.

Your answer	

[1]

6. The depletion of ozone is catalysed by chlorine radicals.

Which of the following describes a termination step of the radical mechanism?

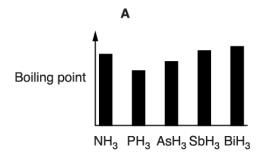
	Number of radicals	Enthalpy change
Α	decreases	negative
В	increases	negative
С	decreases	positive
D	increases	positive

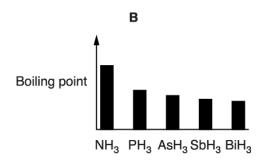
Your answer	

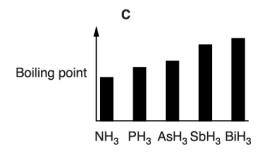
7. What is the effect on the volume when the pressure of an ideal gas is doubled at the same time as the temperature (in Kelvin) is doubled?		
	A. halved B. remains the same C. doubled D. quadrupled	
	Your answer	[1]
8.	Concentrated sulfuric acid is warmed with sodium bromide.	
	Which products are formed?	
	A. HBr as the only gas B. no products C. H ₂ S, Br ₂ and HBr D. SO ₂ , Br ₂ and HBr	
	Your answer	[1]
9.	Which reaction will not give bromoethane as a product?	
	 A. Ethane with bromine in ultraviolet radiation. B. Ethene with bromine at room temperature and pressure. C. Ethene with hydrogen bromide at room temperature and pressure. D. Ethanol with sodium bromide and concentrated sulfuric acid, hear 	
	Your answer	[1]

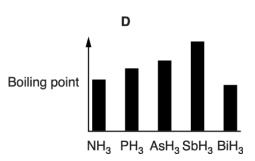
10. Tin reacts with concentrated nitric acid, as shown in the equation below.

$$Sn + 4HNO_3 \rightarrow 4NO_2 + SnO_2 + 2H_2O$$


Which row represents the oxidation state changes for nitrogen and tin in this reaction?


	Nitrogen	Tin
Α	increases by 1	decreases by 2
В	increases by 1	decreases by 4
С	decreases by 1	increases by 2
D	decreases by 1	increases by 4


Value analyses	
Your answer	


[1]

11. Which bar chart shows the boiling points of the group 15 hydrides?

Your answer	
i dui aliswoi	

12. A substance has the formula shown below.

$$CH_2 = CC \cdot CH_2 CH_3$$

Which of the following is a structural **isomer** of this substance?

- A. 2-chlorobut-1-ene
- B. 3-chlorobut-4-ene
- C. 2-chloromethylpropene
- D. 1-chloromethylpropene

Your answer	

[1]

- 13. Which molecule is linear in shape?
 - A. SO₂
 - B. H₂S
 - C. CS₂
 - D. C₂O

Your answer	

[1]

14. The following data were collected for the equilibrium $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ at 500 K.

$$[H_2(g)]_{eqm} = 0.14 \,\text{mol dm}^{-3}$$

$$[I_2(g)]_{eqm} = 0.040 \,\text{mol dm}^{-3}$$

$$\left[{\rm H_2(g)} \right]_{\rm eqm} = 0.14 \, {\rm mol \, dm^{-3}} \qquad \left[{\rm I_2(g)} \right]_{\rm eqm} = 0.040 \, {\rm mol \, dm^{-3}} \qquad {\it K_c} = \frac{{\rm [HI(g)]^2}_{\rm eqm}}{{\rm [H_2(g)]}_{\rm eqm} \, {\rm [I_2(g)]}_{\rm eqm}} = 160 \, {\rm mol \, dm^{-3}} = 160 \, {$$

What will be the value of [HI(g)]_{eqm} under these conditions?

- A. 5.9×10^{-3}
- B. 0.45
- C. 0.90
- D. 0.95

Your answer	
YOUR AUSWEI	

15.	Which molecule is non-polar?	
	A. IBr B. CH ₂ C ₆ C. NF ₃ D. BF ₃	
	Your answer	[1]
16.	Propan-1-ol is heated with AZ_2O_3 . The organic product is then reacted with bromine.	
	What is the final outcome of these two reactions?	
	A. 1-bromopropaneB. 1-bromopropane and 2-bromopropaneC. 1,2-dibromopropaneD. 1,3-dibromopropane	
	Your answer	[1]
17.	Which pair of compounds will react to form the ester CH ₃ CH ₂ COOCH ₂ CH ₂ CH ₂ CH ₃ ?	
	A. CH ₃ CH ₂ CH ₂ OH and CH ₃ CH ₂ CH ₂ COOH B. CH ₃ CH ₂ CH ₂ OH and (CH ₃ CO) ₂ O C. CH ₃ CH ₂ COOH and CH ₃ CH ₂ CH ₀ CHO D. (CH ₃ CH ₂ CO) ₂ O and CH ₃ CH ₂ CH ₂ OH	
	Your answer	[1]

18.	Some students wish to make 0.970 mol of zinc oxide by the reaction shown below. They a told that the reaction gives a 95.0% yield.	re
	$ZnCO_3(s) \rightarrow ZnO(s) + CO_2(s)$	
	What mass of zinc carbonate should they heat?	
	A. 83.2 g B. 117 g C. 122 g D. 128 g	
	Your answer	
		[1]
19.	Which solution contains the greatest number of ions?	
	A. $10.0 \text{ cm}^3 \text{ of } 0.500 \text{ mol dm}^{-3} \text{ NaC}\iota$ B. $0.300 \text{ dm}^3 \text{ of } 0.0400 \text{ mol dm}^{-3} \text{ NaC}\iota$ C. $0.0200 \text{ dm}^3 \text{ of } 0.500 \text{ mol dm}^{-3} \text{ MgC}\iota$ D. $40.0 \text{ cm}^3 \text{ of } 0.150 \text{ mol dm}^{-3} \text{ MgC}\iota$	
	Your answer	[1]
20.	Nitrogen and oxygen combine, as shown below. $N_2(g) + O_2(g) \rightleftharpoons 2NO(g) \; \Delta_r \mathcal{H} = +180 \; kJ \; mol^{-1}$	
	Which statement is correct for this reaction?	
	 A. The reaction is exothermic. B. The activation enthalpy for the reverse reaction is smaller than the activation enthalpy for the forward reaction. C. Once energy equal to the activation enthalpy has been provided, the reaction will continue without further energy input. D. The sum of the bond enthalpies of bonds made is greater than the sum of the bond enthalpies of bonds broken. 	/
	Your answer	[1]

3 4 1.8×10^{24} 2.4×10^{24} r answer				[1]
1.8×10^{24} 2.4×10^{24} The answer is an example of the second				[1]
2.4 × 10 ²⁴				[1]
r answer				[1]
				[1]
ch row could be				
JITTOW COULD DC	correct for solids with	h the structure type i	named?	
Structure type	Melting point	Solubility in water	Electrical conductivity	
onic	high	soluble	high	
netallic	high	insoluble	high	
onic	low	soluble	high	
metallic	low	insoluble	low	
nass of useful pr	roducts × 100 / mass	s of reactants		[1]
B amount of products × 100 / amount of reactants				
M_{r} of useful prod	ucts × 100 / <i>M</i> _r of rea	actants		
ranswer				[1]
ה היים היים היים היים היים היים היים הי	Structure type Denic Inetallic Inetallic The answer It is a correct mean assof useful products in a correct with a correct mean and the answer in a correct mean and the answer in a correct mean and the area of useful products in a correct me	Melting point high high honic low hetallic low reanswer t is a correct measure of percentage hass of useful products × 100 / mas amount of products × 100 / M of reactant of of useful products × 100 / M of reactant of of useful products × 100 / M of reactant of of useful products × 100 / M of reactant of useful products × 100 / M of useful products × 100 / M of reactant of useful products × 100 / M of	Melting point Solubility in water polic high soluble metallic high insoluble polic low soluble metallic low insoluble reanswer It is a correct measure of percentage atom economy? mass of useful products × 100 / mass of reactants amount of products × 100 / amount of reactants My of products × 100 / My of reactants My of useful products × 100 / My of reactants	Structure type Melting point Solubility in water Conductivity Indic high Inetallic high Inetallic high Inetallic low Inetallic low Inetallic low Inetallic low Inetallic low Inetallic low Insoluble high Inetallic low The answer It is a correct measure of percentage atom economy? In ass of useful products × 100 / mass of reactants Information for products × 100 / M of reactants Information for products × 10

24.	What is correct about hydrogen bromide'?	
	A It reacts with concentrated sulfuric acid to form Br ₂ and H ₂ S.	
	B It forms white fumes with ammonia.	
	C Its <i>M</i> _r is 79.9.	
	D It does not decompose on heating.	
	Your answer	[1]
25.	For which purpose is distillation used?	
	A to allow a liquid to boil without the loss of vapour	
	B to purify a liquid product	
	C to remove an involatile impurity	
	D to allow further reaction without the loss of product	
	Your answer	[1]
26.	What is correct about a 'green chemistry' process?	
	A It makes waste products that are easier to separate.	
	B It makes processes cheaper.	
	C It uses organic solvents.	
	D It reduces the number of steps necessary.	
	Your answer	[1]

VVI	nat is the new volu	me?		
Α	0.005 V			
В	0.93 V			
С	1.07 V			
D	20 V			
Yo	our answer			[1]
Wh	nich row is correct	for the silver halide sho	own?	
	Halide	Colour	Solubility in ammonia	
Α	silver chloride	white	soluble	
В	silver bromide	yellow	insoluble	
С	silver iodide	yellow	soluble	
_				
D	silver iodide	cream	partially soluble	
Yo CH Wh	our answer H₃C/can be convernat is correct abou The reaction is su	ted to CH3NH2 in one s t this process? ubstitution of C/by NH3	step.	[1]
You CH With A B	our answer H₃C/can be convernat is correct abou The reaction is su	ted to CH ₃ NH ₂ in one statistic this process? Substitution of C/by NH ₃ amide.	step.	[1]
Yo CH Wh	our answer H₃C/can be convernat is correct about The reaction is suited. The product is an	ted to CH ₃ NH ₂ in one states this process? Substitution of C/by NH ₃ amide. H ₄ ⁺ .	step.	[1]

A sample of gas, volume V, has its temperature raised from 0°C to 20°C. The pressure

A CH ₃ C/reacts faster because the C–C/bond is more polar than the C–I bond. B CH ₃ I reacts faster because the C–C/bond is stronger than the C–I bond. C Both form ethanol. D In each case, homolytic bond fission occurs. Your answer [1] 31. What will react with a phenol? A sodium carbonate B sodium hydroxide C ethanoic acid D acidified potassium dichromate Your answer [1] 32. When are insoluble impurities removed during recrystallisation? A when the hot solution is filtered	וו
C Both form ethanol. D In each case, homolytic bond fission occurs. Your answer [1 31. What will react with a phenol? A sodium carbonate B sodium hydroxide C ethanoic acid D acidified potassium dichromate Your answer [1 32. When are insoluble impurities removed during recrystallisation?	ון
C Both form ethanol. D In each case, homolytic bond fission occurs. Your answer [1 31. What will react with a phenol? A sodium carbonate B sodium hydroxide C ethanoic acid D acidified potassium dichromate Your answer [1 32. When are insoluble impurities removed during recrystallisation?	1]
Your answer [1 31. What will react with a phenol? A sodium carbonate B sodium hydroxide C ethanoic acid D acidified potassium dichromate Your answer [1 32. When are insoluble impurities removed during recrystallisation?	1]
31. What will react with a phenol? A sodium carbonate B sodium hydroxide C ethanoic acid D acidified potassium dichromate Your answer [1]	1]
A sodium carbonate B sodium hydroxide C ethanoic acid D acidified potassium dichromate Your answer [1]	
A sodium carbonate B sodium hydroxide C ethanoic acid D acidified potassium dichromate Your answer [1]	
C ethanoic acid D acidified potassium dichromate Your answer [1] When are insoluble impurities removed during recrystallisation?	
C ethanoic acid D acidified potassium dichromate Your answer [1] When are insoluble impurities removed during recrystallisation?	
D acidified potassium dichromate Your answer [1] 32. When are insoluble impurities removed during recrystallisation?	
32. When are insoluble impurities removed during recrystallisation?	
Whom are insolable impartice formeved during real ystallication:	I]
· · · · · · · · · · · · · · · · · · ·	
WHELL THE HOT POINTIOL IP HITELEN	
B as the solution cools	
C when the crystals are filtered off	
D when the crystals are washed	
Your answer [1	

33.	Which of these is classified as an elimination reaction? A $CH_3COOH + C_2H_5OH \rightarrow CH_3COOC_2H_5 + H_2O$	
	B $CuSO_4 \bullet 5H_2O \rightarrow CuSO_4 + 5H_2O$	
	$C C_2H_5OH \rightarrow C_2H_4 + H_2O$	
	$D C_{17}H_{36} \to C_{10}H_{22} + C_7H_{14}$	
	Your answer	[1]
34.	$CuCO_3 \rightarrow CuO + CO_2$ 0.618 g of copper carbonate ($M_r = 123.5$) is heated. What is the volume of CO_2 produced at room temperature and pressure? A 120 cm ³	
	B 1.2 dm ³	
	C 240 cm ³	
	D 12 dm ³	
	Your answer	[1]
35.	What is correct about a sodium chloride lattice?	
	A There are attractions between ions of different charge.	
	B The sodium ions are larger than the chloride ions.	
	C The numbers of sodium ions and chloride ions are not equal.	
	D Each sodium ion is surrounded by four chloride ions.	
	2 Lacir cediam for its carroanada by four emerica forts.	
	Your answer	[1]

36.	What is correct about an exothern	nic reaction?	
	A Heat is taken in.		
	B More bonds are made than br	oken.	
	C The sign of ΔH is positive.		
	D It is represented by a downwa	ards arrow on an enthalpy profile diagram.	
	Your answer		[1]
37.	What is the functional group in the A carboxylic acid	e compound CH3COOCOC2H5?	
	B ester		
	C acid anhydride		
	D ketone		
	Your answer		[1]
38.	This question concerns four comp	oounds each with four carbon atoms.	
	1. CH ₃ CH ₂ CH ₂ CH ₂ OH	2. CH ₃ CH(CH ₃)CH ₂ OH	
	3. CH ₃ CH ₂ CH ₂ CHO	4. CH ₃ CH ₂ OCH ₂ CH ₃	
	What is the order of their boiling p	oints, largest first?	
	B 1243		
	C 4312		
	D 3421		
	Your answer		[1]

39.	Which has the largest bond angle? A BF ₃	
	B CF ₄	
	C NF ₃	
	D OF ₂	
	Your answer	[1]
40.	Nitrogen monoxide, NO, reacts instantaneously in air to form NO_2 . What is an explanation for this?	
	A NO is a radical taking part in a termination reaction.	
	B the activation enthalpy for the reaction is low.	
	C oxygen is a very reactive gas.	
	D NO ₂ is less stable than NO.	
	Your answer	[1]
41.	What is the correct order of radiation in order of increasing wavelength? A ultraviolet < visible < infrared B ultraviolet < infrared < visible C visible < infrared < ultraviolet D infrared < visible < ultraviolet	
	Your answer	[1]

42.			ing is a cyclic s	aturated aliphatic cor	npound?	
	Α	cyclohexene				
	В	cyclohexane				
	С	benzene				
	D	hexane				
	You	ır answer				[1]
43.	\/\ha	at is not a prope	erty of hydroge	n iodide?		
	A	It reacts with a	_	Triodido:		
	В	It is soluble in v				
	С	It is stable to h				
	D	It reacts with s	odium hydroxi	de.		
	You	ır answer				[1]
			_			
4.4						
44.				g points with the lowe	est first'?	
	A	CH ₄	CH₃C/	CH₃OH		
	В	CH ₄	CH₃OH	CH₃C/		
	С	CH ₃ C/	CH₃OH	CH ₄		
	D	CH₃OH	CH₃C/	CH ₄		
	You	ır answer				[1]
45.		ch statement ab				
	A Ozone is a polluting gas in the stratosphere.					
	B Ozone acts as a sunscreen in the stratosphere.					
	C There is no ozone in the troposphere.					
	D	Ozone is an iso	omer of oxyge	٦.		
	You	ır answer				[1]

46.	A company makes a cleaning product and is looking for a 'greener' method of making the product.	ne
	 Which one of the following would the company consider? A Finding a reaction with a higher percentage yield. B Finding a reaction with a higher atom economy. C Using more organic solvents. D Using inorganic catalysts rather than enzymes. 	
	Your answer	[1]
47.	Name the functional group in HCHO. A aldehyde B ketone C alcohol D carboxylic acid Your answer	[1]
48.	 1.0 g of solid carbon dioxide is vaporised. What volume of gas (in cm³) is produced at RTP? A 0.55 B 24 C 550 D 24 000 	
	Your answer	[1]

49.	What is the percentage of chlorine by mass in magnesium chloride? A 59% B 66% C 74%				
	D 75% Your answer	[1]			
50.	Which statement about the reactions of solid halides with concentrated sulfuric acid is correct? A Chlorides produce HC/as the only gas. B Bromides produce HBr, Br ₂ and H ₂ S. C lodides produce HI, I ₂ and SO ₂ . D Astatides would be expected to produce HAt only.				
	Your answer	[1]			
51.	Which statement about electronegativity is correct? A Electronegativity is the charge on an element's ion. B If a bond is polar, the two atoms have different electronegativities. C If a molecule has no dipole, all its atoms have the same electronegativity. D Electronegativity increases down a group of the Periodic Table. Your answer	[1]			
52.	Which substance does not have hydrogen bonding between its molecules? A C_6H_5OH B CH_3CHO C CH_3COOH D C_3H_7OH				
	Your answer	[1]			

53.	Which statement about the flame colour of lithium is correct? A It is yellow.	
	B It is caused by electrons absorbing visible light.	
	C It is the result of bright lines in lithium's emission spectrum.	
	D It follows a pattern of colours in Group 1.	
	Your answer	[1]
54.	35 cm ³ of a solution has a concentration of 0.125 mol dm ⁻³ . A student calculates the amount (in moles) of solute in this solution.	
	Which answer is given to the appropriate number of significant figures? A 4.37×10^{-3}	
	B 4.375×10^{-3}	
	C 4.38×10^{-3}	
	D 4.4×10^{-3}	
	Your answer	[1]
55.	Hydrochloric acid reacts with sodium carbonate as shown in the equation. $2HC/+\ Na_2CO_3 \rightarrow 2NaCl + CO_2 + H_2O$	
	20 cm ³ of 2.0 mol dm ⁻³ Na ₂ CO ₃ are added to 20 cm ³ 2.0 mol dm ⁻³ HC/.	
	What mass of CO ₂ (in g) is produced? A 0.88 B 1.76 C 22	
	D 1760	
	Your answer	[1]

56.	A sample of gas has a mass of m g and occupies a volume V m 3 at a pressure p Pa and temperature T K.		
	Which expression is correct for the M_r of the gas? A mRT/pV B pV/mRT		
	C pV/RT D mRT/npV		
	Your answer	[1]	
57.	Which statement about carboxylic acids is correct? A They can be made by oxidising secondary alcohols. B They react with phenols. C They do not fizz with sodium carbonate solution. D They form esters when reacted with tertiary alcohols.		
	Your answer	[1]	
58.	What is not a consequence of hydrogen bonding? A Water expands on freezing. B Ethanol is very soluble in water. C Sodium chloride dissolves in water. D H ₂ O has a higher boiling point than H ₂ S.		
	Your answer	[1]	

59.	Whi A	Which statement about a lattice of sodium chloride is correct? A The ions are the same size.				
	В	The attraction between two sodium ions is greater than the repulsion between two				
	С	Each sodium ion is surrounded by s	six chloride ions.			
	D	There are more sodium ions than ch				
	You	ır answer		[1]		
60.	Whi	ch row is correct?				
		Name	Formula			
	Α	sodium nitride	Na ₃ N			
	В	aluminium sulfate	ASO ₄			
	С	copper(I) oxide	CuO			
	D	calcium hydroxide	CaOH₂			
61.	Wha Tab A	le?	guration of an element in Group 16 of	[1] the Periodic		
	B C D	p ⁵ p ⁶ p ¹⁶		[1]		

62.	Geiger and Marsden fired α-particles at a gold foil. What happened in their experiment?			
	 A The α-particles were scattered randomly. B Most α-particles passed through undeflected. C Many α-particles bounced back. D No α-particles were deflected. 			
	Your answer	[1]		
63.	Which molecule has no lone pairs?			
	A BeC½ B CF₄ C NH₃ D BH₃			
	Your answer	[1]		
64.	What is the volume (in cm³) of 4.4 g of CO ₂ at RTP?			
	A 105.6 B 2.4×10^3 C 2.4×10^4 D $105 600$			
	Your answer	[1]		
65.	Which reaction will give CH ₃ CH ₂ CH(OH)CH ₂ CH ₃ as a product?			
	 A Reduction of CH₃CH₂CH₂CH₂CHO B Treatment of CH₂=CHCH₂CH₂CH₃ with conc sulfuric acid followed by water C Heating CH₃CH₂CH=CH₂ with steam and phosphoric acid under pressure D Treatment of CH₃CH=CHCH₂CH₃ with conc sulfuric acid followed by water 			
	Your answer	[1]		

Page 22 of 37

Created in ExamBuilder

 $\hfill \odot$ OCR 2017. You may photocopy this page.

	A An amine is formed. B RC/is acting as an acid. C The reaction is electrophilic substitution.	
(D An amide is formed.	
`	Your answer [[1]
67. _]	The mass spectrum of ethanoic acid has a peak at m/z 45. Which species could cause this	s?
E (A CH ₃ COOH ⁺ B COOH ⁺ C ¹³ CH ₃ COOH+ D CH ₃ ⁺ Your answer	[1]
68. _\	What is formed at the cathode when aqueous aluminium sulfate is electrolysed?	
E	A HydrogenB OxygenC AluminiumD Sulfur dioxide	
`	Your answer [[1]

69.	Which term correctly describes cyclohexane?	
	A AreneB AlkeneC AliphaticD Unsaturated	
	Your answer	[1]
70.	Urea has formula CO(NH ₂) ₂ .	
	What is the percentage of nitrogen by mass in urea?	
	A 23%	
	B 25%	
	C 41%	
	D 47%	
	Your answer	[1]
71.	What is a property of solid iodine?	
	A It is very soluble in water.	
	B It is purple in colour.	
	C It dissolves in organic solvents.	
	D It melts when heated at room pressure.	
	Your answer	[1]

72. Silver nitrate solution is added to solutions of sodium halides.

Which row is correct?

	Halide	Precipitate formed with silver nitrate
Α	chloride	white, insoluble in ammonia
В	iodide	cream, insoluble in ammonia
С	chloride	cream, soluble in ammonia
D	iodide	yellow, insoluble in ammonia

	Critoriae	Cream, Soluble in aminoria	
D	iodide	yellow, insoluble in ammonia	
Your a	nswer		[1]
What is	the action (if any) of c	oncentrated sulfuric acid on HBr?	
A No	o reaction		
B Fo	orms SO ₂		
C Fo	orms H ₂ S		
D Fo	orms sulfur		
Your a	nswer		[1
	Your and What is B For C For D For	D iodide Your answer What is the action (if any) of come action B Forms SO ₂ C Forms H ₂ S	yellow, insoluble in ammonia Your answer What is the action (if any) of concentrated sulfuric acid on HBr? A No reaction B Forms SO ₂ C Forms H ₂ S D Forms sulfur

- 74. Which molecule forms permanent dipole permanent dipole bonds as its strongest intermolecular bond?
 - A CH₃CHO
 - B CH₃COOH
 - C CC4
 - D CO₂

Your answer		[1]

75.	A student says that bio-ethanol is carbon neutral.				
	Which option provides evidence that disagrees with the student's statement about bio- ethanol?				
	 A It gives off carbon dioxide when it burns. B It is made from crops that absorb carbon dioxide. C Energy from conventional power-stations is used to make it. D Valuable land is used up growing the crops used to make bio-ethanol. 				
	Your answer	[1]			
76.	Which substance cannot be made in a single step from C ₂ H ₄ ?				
	$A C_2H_5OH$				
	$B C_2H_5Br$				
	C C_2H_6 D $C_2H_5NH_2$				
	Your answer	[1]			
77.	Which substance will not give 3-methylpentane when reduced with hydrogen?				
	A 2-ethylbut-1-ene				
	B 3-methylpent-2-eneC 2-methylpent-1-ene				
	D 3-methylpent-1-ene				
	Your answer	[1]			

78.	What is not a reaction of 2-methylpropan-2-ol?				
	 A Reaction with an acid anhydride to form an ester B Oxidation to a ketone C Dehydration to an alkene D Reaction with HCl to form a haloalkane 				
	Your answer	[1]			
79.	Which statement about instantaneous dipole – induced dipole bonds is correct?				
	 A They become weaker with increasing chain length of an organic compound. B They become stronger with increased branching in organic compounds. C They occur between molecules rather than atoms in molecules. D In any molecule they are always the weakest intermolecular bond. Your answer	[1]			
80.	Which of the following is a redox reaction?				
	A $2Na + 2H_2O \rightarrow 2NaOH + H_2$ B $2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$ C $CaCO_3 + 2HC/ \rightarrow CaC_2 + H_2O$ D $MgCO_3 \rightarrow MgO + CO_2$				
	Your answer	[1]			

Whi	ch statement is correct about fusion reactions?	
Α	They occur at room temperature and pressure.	
В	They result in the formation of new elements.	
С	They only occur in stars.	
D	They only occur when a large nucleus collides with a small nucleus.	
You	ir answer	[1]
Whi	ch statement is correct about orbitals?	
Α	s-orbitals are circular.	
В	Orbitals always contain two electrons	
С	A/has an orbital containing a single electron.	
D	A p-orbital can contain up to six electrons.	
You	r answer	[1]
Whi	ch statement is correct about the melting points and structures of the elements in Perio	d
Α	The melting points increase across the Period.	
В	Elements on the left have ionic structures.	
С	Elements on the right have covalent structures.	
D	Metals have the highest melting points.	
You	er answer	[1]
	A B C D You Whita B C D You Whita P C D	B They result in the formation of new elements. C They only occur in stars. D They only occur when a large nucleus collides with a small nucleus. Your answer Which statement is correct about orbitals? A s-orbitals are circular. B Orbitals always contain two electrons C A/has an orbital containing a single electron. D A p-orbital can contain up to six electrons. Your answer Which statement is correct about the melting points and structures of the elements in Period. The melting points increase across the Period. B Elements on the left have ionic structures. C Elements on the right have covalent structures.

84.	What is a reason that the first ionisation enthalpy increases across a Period'	?
	A Each electron is attracted to more protons.	
	B The electrons are further from the nucleus.	
	C The atoms get larger.	
	D The charge density of the ions increases.	
	Your answer	[1]
85.	Which compounds will react together under appropriate conditions?	
	A phenois and acid anhydrides	
	B carboxylic acids and phenol	
	C alcohols and phenols	
	D ethers and carboxylic acids	
	Your answer	[1]
86.	Which compound does not exist?	
	A Fe ₂ SO ₄	
	B Ag ₂ SO ₄	
	C PbSO ₄	
	D $Fe_2(SO_4)_3$	
	Your answer	[1]

One method of producing hydrogen is the thermal decomposition of steam in the presence of a catalyst.

$$2H_2O(g) \rightleftharpoons 2H_2(g) + O_2(g)$$

$$\Delta_{\rm r}H = + 484 \,{\rm kJ} \,{\rm mol}^{-1}$$

Which set of conditions will produce the highest yield of hydrogen?

	Temperature	Pressure
Α	High	High
В	High	Low
С	Low	Low
D	Low	High

Your answer	
I COII CITICITO	

[1]

88. Tests are done on an aqueous solution containing two sodium salts.

The results are shown below.

Test	Result
Add aqueous chlorine followed	Brown aqueous layer and brown
by an organic solvent	organic layer
Add aqueous barium nitrate	White precipitate

What are the anions in the solution?

- A bromide and sulfate
- B sulfate and iodide
- C sulfate and chloride
- D bromide and chloride

Your answer	

89.	Wha	t is a reason that BF ₃ has no overall dipole?	
	A B C D	It is the same shape as ammonia. B and F have very similar electronegativities. It is trigonal. It is a small molecule.	
	Your	answer	[1]
90.	Wha	t is correct about a solution of phenol?	
	A B C D	It will give a red colour with neutral iron(III) chloride. It will fizz with sodium carbonate. It will get warm when sodium hydroxide is added. It will react with a solution of ethanoic acid to form an ester.	
	Your	answer	[1]
91.	MnC	\mathcal{D}_4^- ions react with Fe $^{2+}$ ions according to the equation shown below.	
		$MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$	
		t volume of 0.100 mol dm ⁻³ potassium manganate(VII) is needed to react with 0.250 ns of iron dissolved in sulfuric acid?	
	A B C D	8.96 cm ³ 22.4 cm ³ 44.8 cm ³ 224 cm ³	

Your answer

92.	A chemist wants to accurately determine the aspirin content of an aspirin tablet.	
	Which of the following techniques should the chemist use?	
	A. thin layer chromatographyB. melting point determinationC. addition of a neutral solution of iron(III) chlorideD. titration with sodium hydroxide solution	
	Your answer	[1]
93.	What volume of 0.250 mol dm ⁻³ sodium hydroxide solution should be diluted to 1000 cm ³ make a 0.0100 mol dm ⁻³ solution?	to
	A. 40 cm ³ B. 50 cm ³ C. 80 cm ³ D. 160 cm ³	
	Your answer	[1]
94.	A student carries out a titration. Sodium hydroxide solution is transferred to a conical flask using a pipette. Methyl orange indicator is added to the flask. Hydrochloric acid is added from a burette until the indicator changes colour.	om
	Which of the following would lead to the titre being larger than it should be?	
	A. Rinsing the conical flask with water before adding the sodium hydroxide solution.B. Rinsing the burette with water before filling it with hydrochloric acid.C. Rinsing the pipette with water before filling it with sodium hydroxide solution.D. Adding extra drops of indicator.	
	Your answer	[1]

In a pilot plant making ammonia, NH3	, 200	cm ³ of	nitrogen	are	mixed	with	300	cm ³	of
hydrogen.									

What would be the final volume (at the same temperature and pressure) if complete reaction occurs?

- A. 200 cm³
- B. 250 cm³
- C. 300 cm³
- D. 400 cm³

Your answer	

96. Alcoholic drinks are solutions of ethanol in water. Ethanol is soluble in water due to hydrogen bonding.

Which diagram best illustrates hydrogen bonding between a molecule of ethanol and a molecule of water?

97. Four solutions, W, X, Y, Z, are known to contain ethanol, phenol, ethanoic acid and sodium carbonate. It is not known which solution is which.

When solution X is mixed with solution Z, bubbles of gas are seen.

Drops of universal indicator solution are added to separate samples of each solution. The results of this test are shown below.

	Solution W	Solution X	Solution Y	Solution Z
Universal indicator solution	red solution	blue solution	green solution	red solution

Which solution contains phenol?

- A. Solution W
- B. Solution X
- C. Solution Y
- D. Solution Z

Your answer	

^{98.} A chemist has four solutions, labelled **A**, **B**, **C** and **D**. Each contain one of salicylic acid (HOC₆H₄COOH), ethanoic acid, phenol, ethanol or aspirin (HOOCC₆H₄OCOCH₃).

It is not known which solution is which.

Neutral iron(III) chloride solution and sodium carbonate solution are added separately to samples of A, B, C and D. The results of the tests are shown below.

	Solution A	Solution B	Solution C	Solution D
Neutral iron(III) chloride solution	purple colour	yellow colour	purple colour	yellow colour
Sodium carbonate solution	gas evolved	gas evolved	no change observed	no change observed

Which solution contains salicylic acid?

- A. Solution A
- B. Solution B
- C. Solution C
- D. Solution D

Your answer	

[1]

99. Exhaust gases from vehicle engines contain potential pollutants.

Which substance(s) could be present in the exhaust gases from a vehicle engine as a result of the incomplete combustion of a hydrocarbon?

- 1: Carbon monoxide
- 2: Particulates
- 3: Unburnt hydrocarbons
 - A. 1, 2 and 3
 - B. Only 1 and 2
 - C. Only 2 and 3
 - D. Only 1

Your answer	

100.	Which of the following gases is / are produced when hydrogen burns in air at high temperature?
	1: Water vapour
	2: NO _x
	3: Carbon dioxide
	A. 1, 2 and 3 B. Only 1 and 2 C. Only 2 and 3 D. Only 1
	Your answer

END OF QUESTION PAPER