Mathematics

 Advanced
Paper 2: Pure Mathematics 2

```
Paper 2 Pure Mathematics 2
You must have:
Mathematical Formulae and Statistical Tables,
Calculator
```

Time allowed 2 hours

Write all of you answers on lined A4 paper.

Make sure you write your name and your teacher's name at the top of every page.
Total marks /100

$$
\mathrm{f}(x)=\frac{1}{\sqrt{1-4 x}},|x|<k
$$

where k is a rational number.
a Find the series expansion of $\mathrm{f}(x)$, in ascending powers of x, up to and including the x^{3} term.
b State the value of k.

2 The line l_{1} passes through the points $P(5,8)$ and $Q(15,16)$.
The line l_{2} is perpendicular to l_{1} and passes through the point P.
The line l_{1} intersects the y-axis at A and the line l_{2} intersects the y-axis at B.
Find the area of the triangle $A P B$.

3 A circle has equation $x^{2}+6 x+y^{2}-4 y-32=0$.
a Show that the radius of the circle is of the form $a \sqrt{5}$, where a is a constant to be found.
b Find the coordinates of the centre of the circle.
c The points $A(-9,-1)$ and $B(3,5)$ both lie on the circumference of the circle.
Show that $A B$ is the diameter of the circle.
d The point D lies on the negative y-axis and the angle $A D B=90^{\circ}$. Find the coordinates of D.

4 A basketball player throws a basketball.
The height, h metres, of the basketball above the ground is modelled by the formula,

$$
h=1.9+2 x-\frac{1}{3} x^{2}, x \geq 0
$$

where x is the horizontal distance of the basketball from the player, measured in metres.
The basketball travels in a vertical plane until it either hits the hoop or the ground.
a With reference to the model, interpret the significance of the constant 1.9 in the formula.
b Write $1.9+2 x-\frac{1}{3} x^{2}$ in the form $A-B(x-C)^{2}$, where A, B and C are constants to be found.
c State the greatest height of the basketball and the horizontal distance when it occurs.

5 Find the exact solutions to the equation $2 e^{x}+15 e^{-x}=13$.
You must show clearly how you obtained your answer.

6 The functions p and q are defined by,

$$
\begin{aligned}
& \mathrm{p}(x)=|3-2 x| \\
& \mathrm{q}(x)=\frac{4 x-1}{5}
\end{aligned}
$$

Solve $\mathrm{pq}(x)=\frac{3}{2} x$, giving your answers in exact form.

7 The curve C has parametric equations,

$$
x=\frac{4}{t}-1, y=2 t+\frac{6}{t}-8, t \neq 0
$$

Show that the Cartesian equation of the curve can be written in the form,

$$
y=\frac{(a x-1)(x-b)}{c(x+1)}, x \neq-1
$$

where a, b and c are constants to be found.
(Total for Question 7 is 5 marks)

8 Show that $\int_{2}^{4} \frac{2 x^{2}+x-9}{x^{2}+x-2} d x=4-\ln 6$
(Total for Question 8 is 7 marks)

9 The population of lions in a national park was 2400 at the beginning of 2008.
A model predicts that the lion population will decrease by 2% each year.
The model predicts that after n years, the population will be first below 1600 .
a Show that $n>\frac{\log \left(\frac{2}{3}\right)}{\log \left(\frac{4}{50}\right)}$

A conservation agency wishes to raise $£ 1000$ per lion per year based on the number of lions predicted to be in the park at the start of each year.
b Calculate the total amount raised, to the nearest $£ 1000$, between the beginning of 2008 and the end of 2016.
c Explain why this model of fundraising might not be effective.

10 Figure 1 shows a circle with centre O and radius r.
The chord $A B$ divides the circle into a minor segment R_{1} and a major segment R_{2}.
The chord $A B$ subtends an angle θ at O.

Figure 1 [not to scale]
a Show that the area of R_{1} is $\frac{1}{2} r^{2}(\theta-\sin \theta)$.
b Given that the ratio of the areas of R_{1} to R_{2} is 1:9, show that $\sin \theta=\theta-\frac{1}{5} \pi$.

11 Figure 2 shows curve C with equation $y=\mathrm{f}(x)$
where $\mathrm{f}(x)=\frac{\sin ^{2} x}{e^{\frac{1}{2} x}}, 0, x, 4$

Figure 2

The curve has a local maximum turning point at P.
a Show that the x-coordinate of point P is a solution of the equation $\tan x=4$.
b Using your answer to part a, find the x-coordinate of the maximum turning point on $y=1+4 \mathrm{f}(2 x)$.

12 The points A, B and C, with position vectors $(-5,4,7),(-15,8,12)$ and $(-13,12,1)$ respectively, form a triangle $A B C$.
a Show that triangle $A B C$ is isosceles.
b Calculate the size of angle $A B C$.

13 a Show that, when θ is small, the equation $\frac{2 \cos 4 \theta+4 \tan 2 \theta+1}{1+2 \sin 2 \theta}$ can be written as $3-4 \theta$.
b Hence write down the value of $\frac{2 \cos 4 \theta+4 \tan 2 \theta+1}{1+2 \sin 2 \theta}$ when θ is small.

14 Prove by contradiction that $\sqrt{2}$ is an irrational number.

15 The value of a car can be modelled by the function,

$$
V=\frac{300}{18 \sin \left(\frac{t}{16}\right)+7 \cos \left(\frac{t}{16}\right)}, 0 \leq t \leq 25
$$

where,
V is the value of the car in thousands
t is the time in years since the car was purchased.
a Express $18 \sin \theta+7 \cos \theta$ in the form $R(\sin \theta+\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
Give the exact value of R and the value of α, in radians, to 2 decimal places.
b Find the time, in years, that it will take for the car to be worth half of its original purchase price.
c Find the time taken for the value of the car to reach its minimum value.
d Explain with a reason why this model is not valid for large values of t.

16 The number of confirmed cases, D, per year, of a disease is decreasing. The rate of decrease is proportional to the number of confirmed cases per year.
a Given that initially the number of confirmed cases is D_{0}, show that $\mathrm{D}=D_{0} e^{-k t}$

It is known that after 15 years there are only $\frac{1}{6}$ of the initial confirmed cases per year.
b Find the exact value of k.
c Will the disease ever be eliminated?
Explain your answer.

