DHFS Mathematics - Year 1 Paper 2: Pure and Mechanics

Paper 2 Pure and Mechanics

You must have:

mathematical formulae and statistical tables,

calculator

Time allowed 1 hour 30 minutes

Write all of your answers on lined A4 paper.

Make sure you write your name and your teacher's name at the top of every page.

Total marks	/74
-------------	-----

SECTION A: PURE

Answer ALL questions

A freelance journalist charges an initial fixed fee and then an extra fee per word. She charges £250 for a 300 word article and £410 for a 700 word article.
a Write an equation linking words, *w*, and fee, *F*, in the form *F* = *aw* + *b*.
(3)
b Interpret the values of *a* and *b*.
(2)
She charges a company £650 to write another article.
c Calculate the word length of this article.

(Total for Question 1 is 7 marks)

2 Given that $y = \frac{16}{81}x^4$, express each of the following in the form kx^n , where k and n are constants. **a** $y^{\frac{3}{4}}$

(2) **b**
$$\frac{2}{3}y^{-\frac{1}{2}}$$

(2)

(Total for Question 2 is 4 marks)

- 3 A company expects to sell 20000 computers in the first year if the price of each computer is £650.Let *x* represent the number of £'s by which the price has decreased.
 - **a** Write an expression for the price, p, of one computer, in the form p = a + bx.

The company expects to sell an additional 50 computers every time the price decreases by £1. **b** Write an expression for the number of computers sold, *C*, in the form C = d + ex.

Revenue is defined by the formula,

revenue = (number of computers sold) × (cost of one computer)

c Write an equation for revenue, *r*, in the form $A - B(x - C)^2$, where *A*, *B* and *C* are constants to be found.

The company wishes to maximise the revenue.

d Using your answer to part **c**, or othwerwise, state the price the company should charge for each computer and the revenue they will attain.

(2)

(4)

(1)

(1)

(Total for Question 3 is 8 marks)

4 $f(x) = x^2 - 7x + 10$

g(x) = 6 - 2x

- **a** Sketch the graphs of y = f(x) and y = g(x) on the same axes.
- (4) **b** Find the coordinates of any points of intersection.
- **c** Write down the sets of values of *x* for which g(x) > f(x).

(1)

(4)

(Total for Question 4 is 9 marks)

5 Prove that, for any positive numbers *a* and *b*, where $a \neq b$, $a^2 + b^2 > 2ab$.

(3)

(Total for Question 5 is 3 marks)

6 In the binomial expansion of $(1 + px)^8$, the coefficient of x^3 is 252 times the coefficient of x. Find the value of the coefficient of x^2 .

(5)

(Total for Question 6 is 5 marks)

7 The value, V in £'s, of a car t years after purchase can be modelled by the equation,

 $V = 28000e^{-0.19t} + 2000 \, for \, t \ge 0$

- **a** State the initial value of the car.
- **b** Interpret the meaning of the 2000 in the model.

(1)

(1)

c Find $\frac{dV}{dt}$ and state how $\frac{dV}{dt}$ shows the value of the car decreases over time.

(2)

d Show that, when the value of the car is £18 000, $t = \frac{100}{19} \ln\left(\frac{7}{4}\right)$.

(4)

(Total for Question 7 is 8 marks)

SECTION B: MECHANICS

Answer ALL questions

Unless otherwise indicated, whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$ and give your answer to either 2 significant figures or 3 significant figures.

8 A remote-control car accelerates along a straight race track.

The velocity–time graph (Figure 3) shows the motion of the remote-control car over a period of 25 seconds. The points A and B on the graph have coordinates (5, 10) and (15, 10) respectively.

Figure 3

a Describe what is happening to the direction of travel of the remote-control car.

b	Describe the motion of the car between,	(1)
	$\mathbf{i} O \text{ and } A$	
		(1)
	ii A and B .	
с	Calculate the total distance travelled by the car.	(1)
2		(2)

(Total for Question 8 is 5 marks)

9 A particle of mass 5 kg is at rest under the action of three forces,

$$F_1 = 8i - 2j, F_2 = ai + bj \text{ and } F_3 = ai - j$$

a Find the values of the constants *a* and *b*.

The direction of the force F_1 is reversed.

b Find the acceleration of the particle. Give your answer in vector form.

(3)

(3)

(Total for Question 9 is 6 marks)

10 A train engine of mass 12 tonnes is pulling a carriage of mass 6 tonnes along a horizontal track.

The engine produces a constant driving force of 10kN.

The resistance to motion is 5000 N on the engine and 3000 N on the carriage.

The engine and the carriage are connected by a shunt.

a Show that the train is accelerating at $\frac{1}{9}$ m s⁻².

(3)

When the train is travelling at 30 m s^{-1} , the shunt fails.

b Work out how long it takes the carriage to come to a halt.

(3)

c State one modelling assumption you have made in answering part b.

(1)

(Total for Question 10 is 7 marks)

11 A ball *B* moves along a straight line.

B is initially at rest at the point *O*. At time *t* s, the velocity of *B* is $t(1 - t^2) \text{ m s}^{-1}$. Show that the maximum velocity of the ball is $\frac{2}{3\sqrt{3}} \text{ m s}^{-1}$.

(5)

(Total for Question 11 is 5 marks)

12 A ball is dropped from rest from a height of *h* metres onto a horizontal surface.

After striking the floor, it rebounds to half its original height.

Show that the time, *t*, taken from the instant the ball is dropped until the instant it strikes the floor for the second time is given by,

$$t = \left(2 + \sqrt{2}\right) \sqrt{\frac{h}{g}}$$

where g is the acceleration due to gravity.

(7)

(Total for Question 12 is 7 marks)

TOTAL FOR SECTION B IS 30 MARKS TOTAL FOR PAPER IS 74 MARKS