Solving Other Equations

?

Did you know?

Sunise and sunset times are modelled using trigonometrical equations
For San Diego, California, a simple equation to model daylight hours would be:
Number of daylight hours $=2.4 \sin (0.017 t-1.377)+12$
where t is the day of year from 0 to 365

- From the graph can you tell which dates of the year are the shortest and longest day?

1. Calculate the length of the side marked x in this triangle.

2. Calculate the value of the angle marked x in this triangle.

3. Calculate the value of the side marked x in this triangle

4. Calculate the value of the angle marked x in this triangle.

5. Calculate the value of the side marked x in this triangle

6. Calculate the value of the side marked x in this triangle.

7. Calculate the value of the angle marked x in this triangle.

8. Calculate value of side marked x this triangle.

Other Equations

Solve the following

1. $3^{x}=243$
2. $3 \sqrt{x}+12=7 \sqrt{x}$
3. $2^{2 x+3}=128$
Hint: write 128 as powers of 2
4. $\sin x=\frac{1}{2} \quad 0 \leq x \leq 360$
5. $\sqrt{x+3}=7$
6. $\cos x=0.866 \quad 0 \leq x \leq 360$
7. $2 \sqrt{x}+1=\sqrt{12}+3$
8. $\frac{8}{3 x+7}=2$

Missing info

	Answer
Length of $A B$	
Length of BD	
Length of $A D$	
Size of $\angle B A D$	
Size of $\angle A B D$	

	Answer
Length of $W Z$	
Length of $X Z$	
Size of $\angle W Z X$	
Size of $\angle W X Z$	

Use your knowledge of regular shapes to complete the tables above (you will need them for the next task).

Let's get Triggy

Use your tables and diagrams from the previous activity to complete this table

θ	30°	45°	60°
$\sin \theta$	$\overline{A B}=\frac{1}{2}$	$\frac{X W}{}=\frac{W Z}{X Z}=-$	$\overline{A B}=-$
$\cos \theta$	$-=\frac{\sqrt{3}}{}$	$-=\frac{W Z}{}=-$	$-=-$
$\tan \theta$	$-=\frac{1}{\sqrt{3}}$	$-=-=1$	$-=\frac{1}{1}=\sqrt{ }$

Let's get Triggy Hint

Use your tables and diagrams from the previous activity to complete this table

Starting at $\sqrt{3}$ on the left hand side of the rectangle, find your way to the right hand side by landing only on expressions that are equivalent to $\sqrt{3}$

$\frac{\tan 30^{\circ}}{3}$	$\frac{9}{3^{0.5}}$	$\frac{\sqrt{18}}{\sqrt{6}}$	$\frac{1.5}{0.05}$	$\frac{\sqrt{12}}{\sqrt{2}}$	$\frac{2 \sqrt{6}}{\sqrt{4}}$	$\frac{\sqrt{9}}{3^{0}}$
$\frac{\sqrt{27}}{3}$	$\frac{3 \sqrt{3}}{\sqrt{3}}$	$2 \cos 60^{\circ}$	$\frac{\tan 60^{\circ}}{2}$	$\frac{\sin 30^{\circ}}{\cos 30^{\circ}}$	$3 \tan 30^{\circ}$	$\frac{\sqrt{6}}{\sqrt{2}}$
$\frac{6}{\sqrt{2}}$	$\frac{\cos 60^{\circ}}{\sin 60^{\circ}}$	$\frac{9}{3 \sqrt{3}}$	$\frac{3}{\sqrt{3}}$	$2 \cos 30^{\circ}$	$\frac{3+\sqrt{3}-1}{\sqrt{3}}$	$3 \tan 60^{\circ}$
$\sqrt{3}$	$\frac{9}{\sqrt{3}}$	$2 \sin 60^{\circ}$	$\frac{\sqrt{9}}{3}$	$\frac{\sqrt{9}}{\sqrt{3}}$	$\frac{\sqrt{6}}{2}$	$\frac{\cos 30^{\circ}}{2}$
$3^{\frac{1}{2}}$	$\tan 60^{\circ}$	$\frac{\sqrt{12}}{2}$	$2 \sin 30^{\circ}$	$\frac{\sin 60^{\circ}}{\cos 60^{\circ}}$	$\frac{9^{0.5}}{3^{0.5}}$	$\frac{2 \sqrt{6}}{\sqrt{8}}$
$\frac{\cos 60^{\circ}}{2}$	$\frac{\sqrt{12}}{4}$	$\frac{\sin 30^{\circ}}{2}$	$\frac{\sqrt{9}}{3}$	$\frac{\tan 60^{\circ}}{3}$	$\frac{9 \times 10^{1}}{3 \times 10^{-1}}$	$\frac{3+\sqrt{3}}{\sqrt{3}}$

1. The area of an equilateral triangle is $10 \mathrm{~cm}^{2}$.

What are the lengths of the sides?
2. Two birds are sitting looking at the top of a tower block, as shown in the diagram They are 30m apart.

How tall is the tower?

Multiple Equations

$$
\text { If } \frac{a b}{a+b}=\frac{1}{4} \text { and } \frac{b c}{b+c}=\frac{1}{2} \text { and } \frac{a c}{a+c}=\frac{1}{8} \quad \text { find } a, b \text { and } c
$$

Hint:

- Rearrange these equations so they are linear i.e. no fractions
- Find an expression for b and c in terms of a
- Substitute into the equation that uses b and c

Powers
54
Using what you know about powers, can you solve this equation

$$
(x-6)^{x^{2}-9}=1
$$

Hint

- What do you know about a^{0}
- What do you know about 1^{a}
- What do you know about $(-1)^{a}$

Geometry Puzzle

